
Boundary conditions and the first-order conserved density for gas dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 3417

(http://iopscience.iop.org/0305-4470/21/17/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 21 1988) 3417-3422. Printed in  the U K  

Boundary conditions and the first-order conserved density for 
gas dynamics 

John Verosky 
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK 

Received 14 April 1988, in final form 16 May 1988 

Abstract. Boundary conditions for gas dynamics are chosen to make the first-order 
conserved density finitely integrable. The action of the corresponding third-order 
Noetherian symmetry on the boundary conditions is discussed. A generalisation to first- 
order diagonalised quasilinear systems is considered. 

1. Introduction 

The equations of gas dynamics in one space dimension are 

U, + uu, + f (  U ) l J y  = 0 

U, + vu,, + uu, = 0 

where U is the velocity and U is the density of the gas. The positive function f is 
related to the pressure p (  U )  by p ‘ (  U )  = of (  U). Verosky (1984) showed that for an ideal 
gas pressure p (  U )  = v y ,  y # 1, there is a unique first-order conserved density but for 
arbitrary pressure the first-order density 

is conserved, at least in the sense of the formal variational calculus, which means that 
there is a corresponding flux X such that DIT = D,X on solutions of the gas dynamics 
equations, The derivatives D, and D, are total derivatives and include t and x 
dependencies as they may occur through intermediate functions such as U, U, U, and 
ux. The flux for T given above is 

uu, - vu, 
X =  : - ( f (  U )/ U ) U’, 

and it is a simple exercise in differentiation to check that D,T = D,X. 
If T and X are polynomial functions of the dependent variables and their derivatives 

and the boundary conditions require that the solutions vanish rapidly at infinity then 
a formal conserved density is an actual conserved density because 

X Ajx T d x = l  D , T d x =  D x X d x = X l T X = O  
d t  - x  --x 

and the integrated density is finite and constant in time. See Olver (1986) for several 
examples of this, such as the conserved densities of the Korteweg-de Vries equation. 
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Since for gas dynamics the density T is a rational function, suitable boundary 
conditions must be provided to ensure that the integral of T is finite and constant in 
time. This is the main task of this paper. 

2. The boundary conditions 

The first condition is quite natural for gas dynamics. 
(1) For all t 3 0 the density U rapidly approaches positive constants v ,  and u2 as 

x approaches -03 and +03 respectively. This means that all derivatives of v approach 
zero at +a3 and hence we must have the second condition. 

( 2 )  For all t 3 0 the velocity U approaches solutions of Hopf’s equation 

U, + UU, = 0 

at fa. (This equation has many names (Riemann’s equation, inviscid Burger’s 
equation, for example) but we will simply call it Hopf’s equation.) The flux thus 
approaches some constant multiplying U;‘ at fa. To have a true conserved density, 
this must approach zero. This leads to the third condition. 

( 3 )  For all t 3 0 the derivative U, approaches 03 at *CO. Note that this condition 
is compatible with condition ( 2 )  and that no  shocks will form when U, is positive as 
shown by a simple look at the solution of Hopf’s equation in terms of characteristics. 
The values of U, for all x and all t 3 0 are discussed below. 

(4) The final condition is one on the initial values of U and U and not a boundary 
condition. The denominator satisfies U’, - (f( v ) / v ) u ;  > 0 for the initial values. This 
automatically implies that U, > 0 for all x at t = 0. 

Note that condition (4) implies that T is always finite and together with (1) means 
that T is finitely integrable. Also, this condition continues to hold even as U and U 
evolve and T will remain integrable. A rough sketch of how this may be proved now 
follows. Let p = U + g( v )  and q = U - g( U )  (where g’( U )  = (f( v ) / u ) ” * )  be characteristic 
coordinates. Then condition (4) says that pyqx > 0 for all x at f = 0. But by conditions 
(1)  and  ( 3 )  pl and qx go to positive as x approaches 03. Thus p x  and qx are both 
positive for all x at t = 0. This implies p and q are increasing functions. But p and q 
evolve according to diagonalised equations 

PI + Ab7 q ) p ,  = 0 41 + B(P,  q ) q ,  = 0 
where A = U + ( u f ( v ) ) ” ’  and B = U - ( v f ( v ) ) ” ’  in terms of U and U which, in turn, are 
functions of p and q. This means that p and q are constants on the flows of characteristic 
curves 

respectively. But these flows cannot change the qualitative shapes of the graphs of p 
and q as increasing functions of x and hence U: - (f( v ) / v ) v :  = p y q x  remains positive 
as U and U evolve. This argument continues to hold as long as the functions A and 
B are such that the above differential equations admit unique solutions for any initial 
values of x and  thus induce homeomorphisms among the lines t = constant. A similar 
argument works for any diagonalised first-order system of PDE (into which gas dynamics 
may be transformed) with monotone initial values as long as the corresponding ODE 

are well behaved. It is not even necessary in the case of gas dynamics to require that 
U be positive to prevent A = B, for it is still true that p,q,  = U’, > 0 for zero U. 



Boundary conditions for gas dynamics 3419 

These four conditions imply that T is a well behaved conserved density whose 
integral is finite and constant in time. The conditions are not unphysical because they 
have a simple physical interpretation: a tube of expanding gas, with expansion velocities 
tending to infinity at the ends of the tube. The density of the gas approaches constants 
at the two ends. Even the density T can be interpreted as a measure of ‘simplicity’. 
A simple wave is one where U and U are functionally related 

U = F ( w ( x ,  1 ) )  and U = G(w(x, t ) )  

which happens if and only if either U or  the denominator of T vanishes. To see this 
consider the Jacobian 

u,t’ ,-u,uI; = - ( u u , + f u , ) u , + ( u u , + u u , ) u ,  = u ( u ’ , - ( f ( U , / c ) u f ) .  

Thus the ‘simplicity’ that occurs when U is zero will not cause the denominator of T 
to vanish. Solutions U and U become ‘more simple’ when the denominator becomes 
smaller or  when T becomes larger relative to uu,. Thus the integral of T is a measure 
of how close relative to vu, to a simple wave the solution is. This quantity remains 
constant in time. 

3. Higher-order symmetries 

Gas dynamics has a Hamiltonian structure which can be used to produce a third-order 
symmetry from the conserved density T by Noether’s theorem. A third-order symmetry 
is a flow in the space of solutions for the gas dynamics equations given by an  evolution 
equation of third order in the space derivatives of U and U. Again see Olver (1986) 
for a definitive study of higher-order symmetries. In  this case it is 

where s is the parameter of this flow. Note the expanded forms of the variational 
derivatives. Two total derivatives D, are eventually taken of first-order quantities 
leading to a third-order right-hand side. Note that only powers of the denominator 
u t - (  f ( u ) / u ) u f  will occur in the denominators of the terms in the right-hand side (by 
the quotient rule of elementary calculus), so that the evolution equation is well defined 
on our restricted space of solutions, at least for a short time since that denominator 
starts out as a positive quantity everywhere. 

More importantly, note that the evolution of U is governed by 

U =-D’ 2 U , &  

‘ (denom)’ 

and that if u=constant then U, G O .  This means that this symmetry will not change 
the boundary conditions on U. Also, for U = constant, the symmetry reduces to the 
third-order symmetry of Hopf’s equation 

U, = -Df(l/uz).  

Thus both boundary conditions are preserved by this third-order symmetry. The integral 
of T will of course remain constant since this symmetry is a Hamiltonian system with 
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Hamiltonian function T and Hamiltonian systems always conserve their own Hamil- 
tonian density. This property of preserving both boundary conditions might not in 
general be possessed by a higher-order symmetry 

U ,  = P U, = Q 
because, even if the initial value U = constant at t = 0 holds, then Q, which depends 
possibly on U and its x derivatives, may not be zero and the symmetry may change U 
to a non-constant function. Only if Q = 0 for U = constant, as is the case for the above 
third-order equation, will the property hold. Every term of Q would have to have a 
derivative of U in the numerator. 

As a negative example consider a non-linear Hamiltonian structure for the shallow- 
water wave equations (gas dynamics with f ( v )  = 1): 

Such alternative Hamiltonian structures were first discovered by Nutku ( 1987) and  
show that the gas dynamics equations are biHamiltonian, the fascinating implications 
of which were first explored by Magri (1978). According to Noether's theorem 

is a third-order symmetry, but it reduces to 

at t = 0 if U is a constant c. In particular 

so that U would have to be zero at  fa3 for this third-order symmetry to preserve the 
boundary condition on U. 

4. Diagonalised systems 

The system 

U :  = A k ( u , ,  . . . , u,)uk, k =  1,. . . , n 
for n dependent variables U ' ,  . . . , U "  has, for special choices of A k ,  a first-order 
conserved density of the form 

where the B A  are functions of the U'.  The flux is of the form 

A"B" AlBl A?B' 
X = -  

and simply expanding D , T  = D , X  and comparing coefficients of the first-order 
monomials gives conditions on the A" for the existence of T Gas dynamics can be 

U ,  ' +-+-+U: U ;  
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written in this form, as we saw earlier. In  fact one can include an entropy equation 
U ,  + us, = 0 and still diagonalise for a special choice of pressure p (  U, s)  and get first-order 
conserved density as shown in Verosky (1986). 

If  T exists for a general diagonalised system then consider solutions where u t  is 
always positive for all k and x and where U :  approaches infinity rapidly enough at 
+W. Then the integral of T i s  finite and constant in time. The values of u k  are constant 
on the characteristic curves 

d x l d t  = A" 

and a graph that is everywhere increasing will not lose this topological property as it 
is transferred by the above flow in the xt plane. Thus the conditions on the u t  that 
keep T integrable persist at least until the above flows break down (shock formation, 
for example). 

As it stands, the quasilinear system does not have an obvious Hamiltonian form 
but if it does, by Dubrovin and Novikov (1983) there is a change in the dependent 
variables that would allow it to be written in the form 

H ( v ' ,  u 2 , .  . . , U"). 

The density T would become a new first-order rational conserved density and the 
conditions on the u t  would become new conditions that would keep T finitely 
integrable. The denominators in the new T would never be zero and the Noetherian 
third-order symmetry obtained by replacing the Hamiltonian H by T would only 
contain powers of the well behaved denominators of T and would be a well defined 
evolution equation for a short time at least. 

5. Conclusion 

The purpose of this paper has been to bridge the gap between the formal variational 
calculus which deals with higher-order conserved densities and conservation laws in 
a formal diff erential-algebraic manner and the actual analytic realities of these objects. 
In  the case of gas dynamics, the rational first-order density is given a firm analytic 
footing by restricting the solutions to those satisfying certain reasonable conditions. 
The third-order symmetry resulting from Noether's theorem is also well behaved. 
Similar arguments hold for diagonalised quasilinear systems. 
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